KCP
An efficient and effective 3D laser scan matching
|
paper | preprint | code | video
The official implementation of KCP: K-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for publication in the IEEE Robotics and Automation Letters (RA-L).
KCP is an efficient and effective local point cloud registration approach targeting for real-world 3D LiDAR scan matching problem. A simple (and naive) understanding is: ICP iteratively considers the closest point of each source point, but KCP considers the k closest points of each source point in the beginning, and outlier correspondences are mainly rejected by the maximum clique pruning method. KCP is written in C++ and we also support Python binding of KCP (pykcp).
For more, please refer to our paper:
If you use this project in your research, please cite:
and if you find this project helpful or interesting, please ⭐Star the repository. Thank you!