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Abstract—We propose K-Closest Points (KCP), an efficient and
effective laser scan matching approach inspired by LOAM and
TEASER++. The efficiency of KCP comes from a feature point
extraction approach utilizing the multi-scale curvature and a
heuristic matching method based on the k-closest points. The
effectiveness of KCP comes from the integration of the feature
point matching approach and the maximum clique pruning. We
compare KCP against well-known scan matching approaches
on synthetic and real-world LiDAR data (nuScenes dataset). In
the synthetic data experiment, KCP-TEASER reaches a state-of-
the-art root-mean-square transformation error (0.006m, 0.014◦)
with average computational time 49ms. In the real-world
data experiment, KCP-TEASER achieves an average error of
(0.018m, 0.101◦) with average computational time 77ms. This
shows its efficiency and effectiveness in real-world scenarios.
Through theoretic derivation and empirical experiments, we
also reveal the outlier correspondence penetration issue of the
maximum clique pruning that it may still contain outlier corre-
spondences.

Index Terms—Range Sensing, Mapping, Computer Vision for
Transportation

I. INTRODUCTION

POINT clouds registration is a fundamental problem in
many applications of robotics, computer vision, and com-

puter graphics. In autonomous driving, point cloud registration
or scan matching is commonly used to find the relative pose
transformation between two consecutive scans. With recent
advances in range sensors, LiDARs have been one of the
the preferred sensing options in autonomous driving due
to their reliability and stability. However, LiDAR scans are
often distorted and affected by noise in real-world scenarios.
Therefore, fast and accurate point cloud registration based on
LiDAR measurements is highly demanded [1], [2].

The registration problem has a closed-form least squares
solution obtained by the singular value decomposition if a
set of ground truth correspondences is given. However, the
correspondence set is usually unknown in most real-world
cases. Thus, there are many methods dedicated to handle the
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Fig. 1: Point cloud registration results of FPFH-based
TEASER++ (FPFH-TEASER), ICP, and KCP-TEASER on
real-world LiDAR scans. Two point clouds scanned at different
times are displayed in blue and pink colors. Estimated inlier
and outlier correspondences are represented by red and green
lines in (a) and (d). In this example, (a) The set of inlier
correspondences with FPFH cannot provide clear and consis-
tent information about matching, resulting in (b) an incorrect
registration result. In contrast, (c) ICP registration with raw
points successfully finds a proper transformation but converges
to a local minimum. KCP-TEASER considers (d) a smaller but
more consistent set of correspondences under sparse feature
clouds, and computes (e) an accurate transformation close to
(f) the ground truth registration.

correspondence problem, such as estimating pose and corre-
spondences simultaneously [3], [4], reducing the dependencies
of the correspondence set [5], [6], or filtering out incorrect
correspondences through geometric constraints [7]–[9].

A fast and robust approach for feature-based point cloud
registration, Truncated least squares Estimation And SEmidef-
inite Relaxation (TEASER++) [8], was proposed recently. For
applications of object pose estimation and scan matching,
TEASER++ utilized two matching methods to establish the
feature correspondences, 3DSmoothNet [10] and Fast Point
Feature Histograms (FPFH) [11], respectively. However, the
matching approach of 3DSmoothNet [10] requires high
computational cost when calculating the voxelized smoothed
density value representation. On the other hand, the matching
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approach with FPFH may result in either a large or poor set
of feature point correspondences, which is likely to produce
incorrect registration results, as shown in Figures 1(a) and 1(b).

In addition, to demonstrate the ability of solving a regis-
tration problem without correspondences, TEASER++ further
provides a proof-of-concept registration that considers the
direct product of two point clouds as the set of correspon-
dences. However, a large amount of correspondences fed to
the maximum clique algorithm used in TEASER++ may raise
an extremely huge computational cost. In fact, the maximum
clique problem is derived from one of Karp’s 21 NP-complete
problems.

In this paper, we propose an approach to overcome the
poor initial feature correspondence set and to reduce the
high computational cost coming from the maximum clique
algorithm. The key idea is to efficiently construct a better
and smaller set of feature correspondences. To achieve the
goal, our proposed method adopts an efficient algorithm to
rank and extract feature points based on their reliability,
as well as a neighbor-based searching approach to compute
correspondences between two sets of feature points. The
reliability measure is based on the multi-scale curvature, where
the main idea is adopted by LOAM [12] but we modify the
formulation to make the measure of curvature more accurate,
and the feature matching approach using neighbor searching
is called the k-closest points. This procedure ensures that the
initial set of correspondences remains a small cardinality, and
hence the maximum clique of the corresponding graph can be
efficiently calculated to refine the set of correspondences. A
relative transformation is eventually computed from the refined
feature point correspondences with the solvers introduced in
TEASER++, as shown in Figure 1(d) and 1(e).

The proposed method is evaluated with a synthetic and a
real-world LiDAR scan matching tasks under the nuScenes
dataset [13]. KCP-TEASER presents fast and accurate results
in both experiments, where KCP-TEASER is on average 129
times faster than 3DSmoothNet-based TEASER++, while the
root-mean-square error only increased by (0.001m, 0.003◦) in
the synthetic experiment. Moreover, in the real-world exper-
iment, transformation results of KCP-TEASER are 39% and
7% more accurate than the results of 3DSN-TEASER in terms
of root-mean-square translation and rotation errors. Lastly, the
ablation study within the synthetic experiment also validates
the strengths of KCP.

Contributions. This work proposes an efficient and effec-
tive approach to estimate a small but accurate set of corre-
spondences within two consecutive laser scans. Our approach
greatly reduces the computational cost of the maximum clique,
and reaches a state-of-the-art accuracy of rigid transformation
results. In both theoretical and empirical aspects, we also point
out the outlier correspondence penetration issue that some
outliers could be selected in the maximum clique.

II. RELATED WORK

A. Point Cloud Registration

Rigid registration problem can be challenging if correct
correspondences are unknown. In general, the registration

problems are categorized into local and global approaches
according to whether they attempt to find the globally optimal
transformation.

Local Registration. Local registration approaches do not
consider the global optimality of the estimation. Iterative
Closest Point (ICP) [3] is a classical approach that refines
the set of correspondences and computes the optimal solution
using Horn et al.’s method [14] iteratively. The performance
of ICP relies on good initial guesses since it is easy to
converge to a local minimum. Probabilistic approaches, such
as Normal Distribution Transform (NDT) [5] and Generalized-
ICP (GICP) [6], formulate cells or points with Gaussian
distribution and register two point clouds by minimizing
probability-based distance metrics to conquer some robustness
issues.

Global Registration. Global registration approaches con-
sider the problem in the entire three dimensional special
Euclidean group SE(3) and compute the globally optimal
solution of a formulated optimization problem with several
types of point descriptors, such as histograms [11], eigen-
values along with normals [15], and a voxelized smoothed
density value (SDV) [10]. With the rise of machine learning,
several approaches, e.g., 3DFeat-Net [16] and FCGF [17], are
proposed to study feature representation of points with neu-
ral networks. SKD [18] proposes a learning-based approach
to extract keypoints using saliency estimation. D3Feat [19]
jointly studies keypoint detection and description with a dense
feature extraction network followed by a keypoint detection
criterion. These approaches simply use RANSAC [20] to
estimate registration results based on their computed point
correspondences.

As for the progress of registration methods, Globally Op-
timal ICP (Go-ICP) [4] searches the solution of the registra-
tion problem globally using the paradigm of the branch-and-
bound (BnB). TEASER [9] proposes a truncated least squares-
based registration problem, and exploits semidefinite relax-
ation to transfer the rotation estimation problem into a large-
scale semidefinite programming (SDP). Based on TEASER,
TEASER++ [8] improves computational efficiency by solv-
ing the rotation estimation problem with the graduated non-
convexity algorithm with the truncated least squares (GNC-
TLS) [21], and provides an algorithm to certify the global
optimality of the estimated rotation matrix. Phase Registration
(PHASER) [2] deals with the point cloud registration problem
using the spherical Fourier analysis that can also decouple
the registration problem into the rotation and translation parts.
PHASER avoids the matching issue by using spectrum so that
it does not require point correspondences.

Positioning of KCP. KCP is a local registration approach
since the proposed method attempts to search correspondences
locally in the spatial domain. This strategy would degrade the
global registration solver TEASER++ [8] to a local approach;
nevertheless, it is effective to mitigate the computational
complexity of the maximum clique problem, and makes the
solver more suitable for use in real-world robotics scenarios.
There are two major differences that distinguish our work from
the approaches that inspire KCP:

1) The computational issues of complexity and outlier
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correspondence penetration are rarely mentioned in
TEASER [9] and TEASER++ [8]. Our work mitigates
the computational complexity issue, and point out the
outlier correspondence penetration issue theoretically
and empirically.

2) The smoothness term in LOAM [12] is lack of the
spacing concept in numerical differentiation. Our work
formulates the multi-scale curvature based on the finite
difference, resulting in more accurate approximation of
curvature.

B. Pairwise Constraints for Shape Correspondences

Under the assumption of rigid transformation, there is a
series of 0-1 integer programming problems whose solution
corresponds to the set of inlier correspondences. The formu-
lation usually relates to weighted affinity matrices [22], [23]
or unweighted association graphs [7]–[9], [24], [25], where
the former are usually solved with some relaxation such as
spectral clustering [23], softassign technique [26], or solved
directly by searching [22], and the latter are considered to be
the maximum clique problem [7]–[9], [24] or the vertex cover
problem [25].

III. PROPOSED METHOD

In this section, we introduce the proposed method that finds
the relative rotation R̂ ∈ SO(3) and translation t̂ ∈ R3

between the laser scan Xt = {xt,i ∈ R3 : i = 1, . . . , nx
t }

at time t and its consecutive previous scan Xt−1, which leads
to solve the following optimization problem:

(R̂, t̂) = arg min
R∈SO(3),t∈R3

∑
(a,b)∈Ct,t−1

ρ

(
1

ε2
‖b−Ra− t‖22

)
,

(1)
where Ct,t−1 ⊆ Xt×Xt−1 is a set of unknown correspondences
between Xt and Xt−1, ρ(·) = min(·, 1) is a truncated least
squares cost function, ε ∈ R>0 is the noise bound of
measurements, and SO(3) is the 3D rotation group.

The architecture of KCP is shown in Figure 2. In the
beginning, corner points are extracted from raw point clouds
Xt and Xt−1 using surface parametrization and discrete cal-
culus (Section III-A). Next, a set of correspondences between
two sets of feature points is constructed with a heuristic
approach and graph-based pairwise constraints (Section III-B).
Finally, the relative transformation with respect to the set of
correspondences is computed based on Equation (1).

A. Corner Points Extraction with Multi-scale Curvatures

Curvatures of a point within a continuous parametric surface
are classic and reliable measurements to describe the bending
of its neighborhood. Larger curvatures usually indicate sharp
corners of a surface, and the sparsity of these points makes
them suitable as feature points for scan registration [27].
Therefore, we design an approximate curvature measure for
3D point clouds, and extract corner points for the forthcom-
ing matching step. The main formulation is adopted from
LOAM [12], but we modify the equation based on the finite
difference.

Each scan Xt is first converted into a range image Rt using
the spherical projection,

(θ, ϕ) 7→ (r sinϕ cos θ, r sinϕ sin θ, r cosϕ), (2)

where θ ∈ (0, 2π] represents the horizontal field of view,
ϕ ∈ (0, π) represents the vertical field of view, and the
spatial point described by (r, θ, ϕ) is considered as a point
of Xt. With mapping and discretization, there is a matrix
Rt ∈ Rnv×nh

with entry (Rt)ij = r representing the depth
of the corresponding point,(

r sin
iπ

nv
cos

2jπ

nh
, r sin

iπ

nv
sin

2jπ

nh
, r cos

iπ

nv

)
∈ Xt, (3)

where nv and nh are the resolutions of vertical and horizontal
fields of view (FOV).

Using the i-th row vector as the curve of a point at (i, j)
in Rt, we define the discrete curvature by

κt,s(i, j) =
1

s

(
(Rt)i,j+s + (Rt)i,j−s − 2(Rt)ij

)
(4)

with a given spacing s ∈ N of numerical differentiation.
Eventually the absolute value of mean of curvatures within
ns scales

κt(i, j) =

∣∣∣∣∣ 1

ns

ns∑
s=1

κt,s(i, j)

∣∣∣∣∣ (5)

is computed to be the multi-scale curvature of the vertex. This
scalar descriptor of Equation (5) is similar to the smoothness
term defined in LOAM [12]. However, LOAM omits the term
1/s in Equation (4) and in this case Equation (4) is a more
accurate approximation of curvature because we define it based
on the finite difference for numerical differentiation.

We extract features by choosing those points that have
higher values of multi-scale curvatures. In practice, similar to
the suggestion from [12], points are gathered with the top ne

largest multi-scale curvatures as the feature points individually
within nr horizontal polar subregions for each row, where we
use a lower bound to exclude feature points with low multi-
scale curvatures. We denote Ft ⊆ Xt as the set of feature
points with respect to Rt.

B. Selecting and Pruning Feature Correspondences

A pair (x,y) ∈ Ft × Ft−1 is said to be an inlier point
correspondence if ‖y −R?x− t?‖2 ≤ ε, where (R?, t?) is
the ground truth rigid transformation between Xt and Xt−1.

A challenge in correspondence-free scan matching is to
find inlier feature correspondences between two different point
clouds. To efficiently get a small number of feature point
correspondences, one assumes that a correspondence (x,y)
is more likely to be correct if their distance is small.

The procedure of feature matching in KCP includes two
steps. In the first step, the k-closest points (k-CP) in Ft−1
for each point in Ft are selected to be the candidate feature
correspondences. Given two sets of feature points Ft and Ft−1
calculated in Section III-A, the initial set of correspondences
is defined by

C̄t,t−1 =
⋃

x∈Ft

{
(x,y) : y ∈ T (Ft−1,x, k)

}
, (6)
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Fig. 2: System architecture of KCP. The proposed method using the least square solution is called KCP-SVD, and the proposed
method using TEASER++ is called KCP-TEASER.

where T (Ft−1,x, k) is the set of k-closest points of x
in Ft−1, which can be obtained by using the kd-tree data
structure. k is a hyper-parameter that affects the cardinality and
the inlier correspondence rate of C̄t,t−1 in KCP. The number
of correct correspondences increases with k, but the inlier
correspondence rate drops with excessive k. A desirable k
is set such that C̄t,t−1 has high inlier rate and low cardinality.

In the second step, C̄t,t−1 is pruned to obtain a more
accurate set of correspondences with graph-based pairwise
constraints. This process is the same as TEASER’s [9] and
TEASER++’s [8], but for clarity and completeness, we provide
a concise theoretical review, and newly introduce the outlier
correspondence penetration issue within the derivation. The
main idea is to consider the maximum clique problem on an
association graph, where nodes represent feature point cor-
respondences and edges represent consensus relationships of
two correspondences [7]–[9], [24]. To construct the association
graph, for any two different points x1,x2 ∈ Ft, we adopts the
following measures defined in [8]:

mTIM(x1,x2) = x1 − x2, (7)

mTRIM(x1,x2) =
∥∥mTIM(x1,x2)

∥∥
2
, (8)

where mTIM(x1,x2) ∈ R3 is the translation invariant mea-
surement (TIM) and mTRIM(x1,x2) ∈ R≥0 is the translation
and rotation invariant measurement (TRIM). We define that
(c1, c2) ∈ C̄t,t−1 × C̄t,t−1 is an inlier TIM pair if∥∥mTIM(x1,x2)−R?mTIM(y1,y2)

∥∥
2
≤ 2ε, (9)

and (c1, c2) is an inlier TRIM pair if∣∣mTRIM(x1,x2)−mTRIM(y1,y2)
∣∣ ≤ 2ε, (10)

where c1 = (x1,y1) and c2 = (x2,y2).
Using the triangle inequality, one can obtain Lemma 1,

which describes the relationship between inlier feature cor-
respondences and inlier TRIM pairs.

Lemma 1. Let c1, c2 ∈ C̄t,t−1. If c1 and c2 are inlier feature
correspondences, then (c1, c2) is an inlier TRIM pair.

It is now sufficient to define the association graph by

Gt,t−1 = (C̄t,t−1, Et,t−1), (11)

where Et,t−1 is the set of all inlier TRIM pairs, i.e., each
edge in Gt,t−1 denotes one inlier TRIM pair. Then Theorem 2,
similar to Theorem 6 in [8], provides a graph-based trick to
estimate a subset of C̄t,t−1. This subset is called clique, which
is expected to have a higher inlier rate than C̄t,t−1.

Theorem 2 (Clique for Inlier Feature Correspondences). The
set of inlier feature correspondences is a clique in Gt,t−1.

Theorem 2 can be proved directly by Lemma 1. It is
suggested in [8] to choose the maximum clique C̃t,t−1 of the
graph Gt,t−1 to obtain a pruned set of correspondences, and
a parallel maximum clique algorithm (PMC) [28] is used in
KCP to efficiently calculate the clique. In theoretical aspects,
however, please note that the reverse of Lemma 1 does not
hold. This implies that outlier feature correspondences could
still be included in C̃t,t−1. Furthermore, the maximum clique
C̃ might not contain all inlier correspondences in C̄. This is a
potential problem of applying maximum clique that has rarely
been addressed from a theoretical point of view, and we call
this problem the outlier correspondence penetration issue. An
empirical discussion will be provided in Section IV-A.

C. Estimation of the Relative Pose

With the components described in previous subsections and
the assumption Ct,t−1 = C̃t,t−1, we now can solve the opti-
mization problem of Equation (1). We use the graduated non-
convexity approach with the truncated least squares (GNC-
TLS) [21] and the adaptive voting algorithm, proposed by
TEASER++ [8], to estimate the relative rotation and trans-
lation respectively under the truncated least squares problem,
which is able to suppress extreme costs from outlier corre-
spondences. If there is very few outlier correspondences in
C̃t,t−1, the optimization problem has a closed-form solution
that can be obtained through SVD [14].

IV. EXPERIMENTS

We evaluate the proposed method1 by two LiDAR scan
matching experiments, one with synthetic data, and the other

1Code is available at https://github.com/StephLin/KCP.

https://github.com/StephLin/KCP
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TABLE I: Experiment configuration.

Category Parameter Value

Point cloud
Number of channels 32
Range of vertical FOV (deg) [−30.0, 10.0]
Lower bound z-axis value (m) -1.5

Range image Resolution of Horizontal FOV nh 1800
Resolution of Vertical FOV nv 144

Feature points
Number of curvature scales ns 5
Horizontal polar subregions nr 6
Lower bound of multi-scale curvature 30.0

KCP k {1, 2}
Noise bound (m) 0.06

with real-world nuScenes dataset [13]. Experiment configura-
tion is listed in Table I. Point clouds used in the experiments
are collected by a 32-beam spinning LiDAR sensor with 360◦

horizontal FOV and 20Hz capture frequency. Relative pose
errors in translation (meters per frame) and rotation (degrees
per frame) are used as the evaluation metrics. The success rate
is also computed, where a successful registration is defined as
one whose translation error is below 0.1 meters and rotation
error below 0.5 degrees.

The performance of KCP-TEASER is compared with local
registration methods (ICP [3], GICP [6], NDT [5]) and global
registration methods (Go-ICP [4], Fast Global Registration
(FGR) [29], FPFH-based TEASER++ (FPFH-TEASER) [8],
3DSmoothNet-based TEASER++ (3DSN-TEASER) [8]). We
use the implementation released by the authors of each method
except ICP, GICP, and NDT, which are implemented by
the Point Cloud Library and Autoware. A putative set of
correspondences computed using FPFH, as introduced in [8],
is used as the initial guess of point correspondences for
FPFH-TEASER. Referred to experiment setups of 3DSmooth-
Net [10], 2000 points of each point cloud are randomly chosen
to match and register for 3DSN-TEASER. For input data, ICP
is experimented with corner points calculated by the proposed
corner points extraction method, and the other approaches are
experimented with the raw point clouds. All experiments are
conducted on a desktop computer with an Intel i7-8700 CPU,
16GB RAM, and a GeForce GTX 1060 6GB graphical card
for computing 3DSmoothNet.

A. Synthetic LiDAR Scan Matching Experiment

In this experiment, 40 point clouds in the nuScenes dataset
are randomly selected as the source point clouds. For each
source point cloud, 60 random transformations are applied on
the source point cloud as target point clouds, and Gaussian
white noises of 0.02m standard deviation are applied to all
the points in each dimension. The sampling of the translation
part follows the uniform distribution U [−1, 1]3 in meter. In
view of the axis-angle representation of rotation, the sampling
of the axis follows the uniform distribution on the 3D unit
sphere, and the sampling of the angle follows the uniform
distribution U [−10, 10] in degree.

Table II and Figure 3 present root-mean-square transforma-
tion errors with respect to average computational time. KCP-
TEASER of k = 2 attains comparable RMSE accuracy with

TABLE II: Relative transformation errors and average compu-
tational time in the synthetic scan matching task.

Method
Translation Rotation Time

Su
cc

es
s

R
at

e

(m/frame) (deg/frame) (sec/frame)

Mean RMSE Mean RMSE Mean

ICP 0.075 0.106 0.100 0.329 0.009 78.1%
NDT 0.033 0.042 0.111 0.160 0.390 96.8%
GICP 0.002 0.028 0.007 0.225 0.090 100%

Go-ICP 0.006 0.008 0.004 0.006 13.433 100%
FGR 0.093 0.115 0.817 0.925 0.532 18.8%
FPFH-TEASER 0.026 0.039 0.232 0.385 0.506 89.2%
3DSN-TEASER 0.004 0.005 0.010 0.011 6.327 100%

KCP-SVD (k=1) 0.016 0.028 0.023 0.045 0.022 98.9%
KCP-TEASER (k=1) 0.006 0.011 0.014 0.034 0.024 99.9%
KCP-TEASER (k=2) 0.005 0.006 0.012 0.014 0.049 100%

3DSN-TEASER and GoICP, while the average computational
time of KCP-TEASER is much smaller than those of 3DSN-
TEASER and GoICP. On the other hand, this experiment also
indicates that KCP-SVD and KCP-TEASER are more accurate
than other local registration approaches, where KCP-TEASER
of k = 2 provides a slower but more accurate transformation
result than KCP-TEASER of k = 1.

Ablation Study. Comparing the transformation RMSEs of
ICP and KCP-SVD, we attribute the improvement to that
exploiting the graph-based pairwise constraints on the corre-
spondences set is beneficial to figure out correct correspon-
dences instead of finding closest points iteratively. Moreover,
a smaller transformation error is obtained when replacing
SVD with TEASER++ of k = 1. This progress shows that
leveraging truncated least squares is effective to obtain a more
accurate transformation, but it also implies that there are still
some incorrect correspondences within the maximum clique.
The theoretical discussion of the problem is mentioned in
Section III-B. Furthermore, since KCP-TEASER of k = 2
considers more feature point correspondences than the one of
k = 1, a better estimation result is obtained by increasing
k from 1 to 2, and meanwhile, due to the computation of
maximum clique, a higher computational cost is borne.

To examine the range of the transformation between two
scans that our registration method can withstand, we fur-
ther modify the sampling method to conduct a robustness
evaluation experiment consisted of two sessions. For the
translation session, point clouds are not rotated but trans-
lated uniformly on

{
(rx, ry, rz) : ‖(x, y, z)‖ = 1

}
with

r ∈ {1, 1.5, 2, 2.5, 3}. As for the rotation session, point clouds
are not translated but rotated with an angle randomly picked
from {10, 15, 20, 25, 30} degrees. There are 10 sampling con-
figurations and each configuration would generate 2400 scan
matching tasks. Figures 4 and 5 show the trend of registra-
tion error when the synthetic (ground truth) translation/ration
increases2. Compared to other local registration approaches,
KCP is insensitive to the increase of translation. However,
KCP is relatively sensitive to the increase of rotation.

2For complete results, please refer to https://github.com/StephLin/KCP.

https://github.com/StephLin/KCP
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Fig. 3: Root-mean-square errors of translation (left) and rotation (right) parts with respect to average computational time in
the synthetic scan matching task. Red dotted lines are lower bounds of RMSE with respect to average computational time.
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Fig. 4: Robustness test against large translation. The proposed method is robust against translation (up to 3m), which has
comparable insensitivity as global registration approaches.
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Fig. 5: Robustness test against large rotation. Compared to translation, the proposed method is relatively less robust as it can
only handle rotation up to 10 degrees.

B. Real-world LiDAR Scan Matching

In this experiment, the first 48 scenes of the nuScenes
dataset [13] are chosen to be the testing data, and scan
matching are performed on any two consecutive LiDAR
scans (18439 registrations in total) without initial guess of
relative rigid transformation. The ego vehicle trajectories in
the nuScenes dataset are used as the ground truth solution,
where the relative transformation between two scans is up to
a translation of 1.31 meters and a rotation of 2.29 degrees.
Our method could achieve 99.7% success rate. Table III lists
mean errors and root-mean-square errors of the relative pose,
Figure 6 shows the pose errors in the form of box plot, and
Figure 7 shows the computational time of each method in this
experiment.

In summary, KCP considers fewer correspondences (instead
of the direct product) of two point clouds, resulting in a
lower cost of computing the maximum clique. Moreover, KCP
searches point correspondences in a local region and avoids
a complex computation of feature descriptor, at the expense
of global registration feasibility. KCP-TEASER obtains a
faster, more accurate, and more stable registration results than
both FPFH and 3DSmoothNet based TEASER++. Experiment

TABLE III: Relative transformation errors and average com-
putational time in the real-world scan matching task.

Method
Translation Rotation Time

Su
cc

es
s

R
at

e

(m/frame) (deg/frame) (sec/frame)

Mean RMSE Mean RMSE Mean

ICP 0.038 0.043 0.100 0.123 0.015 99.2%
NDT 0.053 0.066 0.136 0.167 0.151 89.0%
GICP 0.023 0.037 0.073 0.097 0.104 99.3%

Go-ICP 0.060 0.073 0.100 0.125 22.443 85.9%
FGR 0.054 0.068 0.237 0.272 0.867 85.7%
FPFH-TEASER 0.047 0.103 0.294 0.819 0.395 83.0%
3DSN-TEASER 0.022 0.033 0.106 0.135 6.357 99.1%

KCP-SVD (k=1) 0.020 0.022 0.104 0.128 0.023 99.7%
KCP-TEASER (k=1) 0.019 0.022 0.101 0.125 0.025 99.7%
KCP-TEASER (k=2) 0.018 0.020 0.101 0.125 0.077 99.7%

results also indicate that laser scan matching approaches with
KCP are able to provide fast and accurate estimations in this
real-world scan matching problem.

V. CONCLUSION AND FUTURE WORK

We present KCP, an efficient and effective laser scan
matching approach inspired from LOAM and TEASER++.
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Fig. 6: Relative pose errors with respect to translation (left) and rotation (right) parts in the real-world LiDAR scan matching
task. Note that figures are expressed in the type of box plot and diamond dots are corresponding mean errors.
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Fig. 7: Computational time of registration approaches in the
real-world LiDAR scan matching experiment.

We improve the efficiency by using corner point extraction
with the multi-scale curvature and using corner point matching
with the k-closest points, resulting in a small number of
point correspondences that can avoid the high computational
cost of the maximum clique algorithm. We also enhance the
effectiveness by integrating the k-closest points approach with
the graph-based pairwise constraints. Our experiment results
show that both KCP-SVD and KCP-TEASER achieve state-
of-the-art accuracy while maintaining low computational cost.
Besides, KCP-TEASER is more capable to resist incorrect
correspondences than KCP-SVD.

Similar to other local registration approaches, KCP cannot
provide an accurate registration when there is an extreme
translation or rotation between two point clouds. We would
like to extend the proposed method to a global registration
approach by investigating a fast and reliable point descriptor.
Besides, we also want to figure out a strategy to estimate a
proper k under various registration situations. Finally, we plan
to develop a distribution-based KCP to resist irregular bias
within laser scans.
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