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Abstract— We propose LiDAR-Inertial Odometry via Simul-
taneous EGo-motion estimation and Multiple Object Tracking
(LIO-SEGMOT), an optimization-based odometry approach
targeted for dynamic environments. LIO-SEGMOT is formu-
lated as a state estimation approach with asynchronous state
update of the odometry and the object tracking. That is, LIO-
SEGMOT can provide continuous object tracking results while
preserving the keyframe selection mechanism in the odometry
system. Meanwhile, a hierarchical criterion is designed to
properly couple odometry and object tracking, preventing
system instability due to poor detections. We compare LIO-
SEGMOT against the baseline model LIO-SAM, a state-of-
the-art LIO approach, under dynamic environments of the
KITTI raw dataset and the self-collected Hsinchu dataset.
The former experiment shows that LIO-SEGMOT obtains an
average improvement 1.61% and 5.41% of odometry accuracy
in terms of absolute translational and rotational trajectory
errors. The latter experiment also indicates that LIO-SEGMOT
obtains an average improvement 6.97% and 4.21% of odometry
accuracy.

Index Terms— Autonomous driving, SLAM, odometry, mul-
tiple object tracking.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) in dy-
namic environments is challenging because it assumes that
surrounding scenes are stationary, but this assumption is
usually violated in reality. Therefore, SLAM approaches are
required to handle dynamic objects in real world applications
to prevent estimation failure [1]. Meanwhile, Multiple Ob-
ject Tracking (MOT) is essential to recognize surrounding
dynamic information in many applications, such as robot
navigation and autonomous driving. Integrating both compo-
nents in real world applications becomes an important task
to perceive robot states and the surrounding dynamic object
motions in an unknown and time-varying environment [2].

The interaction of odometry and object tracking in dy-
namic environments is increasingly investigated in recent
years. There have been mainly two strategies to integrate
object tracking tasks in SLAM or odometry systems. One
strategy performs a loosely-coupled optimization of odom-
etry and object tracking, in which independent tracking
results are used to refine odometry results for restricted
purposes, such as scale recovery in visual odometry [4]–[6].
The other strategy views both odometry and object tracking
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(b) Trajectories of the robot and the surrounding objects.

Fig. 1: Results of LIO-SEGMOT under the KITTI raw sequence
0926-0014 [3]. The point cloud map in (a) is generated by the odometry
result, and its bird’s eye view is aligned with the satellite image. A close up
view of the white box in (a) is shown as (b), where the red trajectory is the
robot trajectory, and trajectories encoded in different colors are surrounding
objects’ trajectories. Colored arrows represent objects’ velocities.

tasks as a joint and tightly-coupled estimation problem.
It derives a large and complex optimization problem in
which all static and dynamic measurements would affect
both odometry and object tracking results at the same time,
while reliable dynamic measurements are claimed to advance
the accuracy of odometry in dynamic environments [7], [8].
A perception problem that simultaneously estimates local-
ization, static landmarks, and dynamic object movements
is called Simultaneous Localization, Mapping, and Moving
Object Tracking (SLAMMOT) [9]. A subproblem that does
not estimate static landmarks is called Simultaneous EGo-
motion estimation and Multiple Object Tracking (SEGMOT),
and we focus on the SEGMOT problem in this paper.

In most odometry approaches, the keyframe selection
mechanism is widely used for computational efficiency [10]–
[12]. That is, only partial image or LiDAR frames are
selected in the backend estimation processes. Therefore, all
LiDAR information in non-keyframes are discarded from the
odometry, and the robot state only updates in keyframes.
However, object-related measurements in non-keyframes are
also ignored when using the mechanism, resulting in decreas-
ing accuracies of odometry and object tracking [2], [7]. We
notice that robot states and surrounding objects’ states are
formulated to be synchronous in most previous approaches,
in which the factor graph optimization-based methods should
not have this restriction.

In this paper, we propose LIO-SEGMOT, an approach
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to perform LiDAR-Inertial Odometry (LIO) via Simultane-
ous EGo-Motion estimation and Multiple Object Tracking
(SEGMOT) in dynamic environments. The LIO-SEGMOT
estimation problem is formulated as a nonlinear factor graph,
where the subgraph representing the odometry component
inherits LIO-SAM [12], a state-of-the-art LIO approach,
and the other subgraphs representing the object tracking
component comes from a variation of FG-3DMOT [13]. We
formulate a novel asynchronous factor graph architecture
that robot states and surrounding objects’ states are asyn-
chronous, which allows us to perceive complete objects’
trajectories when using the keyframe selection mechanism. In
addition, we introduce a hierarchical coupling condition for
LiDAR object detections to avoid the system instability due
to poor detections, where a similar idea was first introduced
in the visual-based approach proposed by Liu et al. [7].

We evaluate the proposed method under the KITTI raw
dataset [3] and the self-collected Hsinchu dataset. Sequences
of both datasets within dynamic environments are chosen
for evaluation, in which the Hsinchu dataset is a real
world dataset containing many surrounding dynamic objects.
Figure 1 shows a sample result of LIO-SEGMOT on a
KITTI raw sequence, including the robot trajectory, objects’
trajectories, and their velocities. Experimental results reveal
that LIO-SEGMOT presents in average 1.61% and 5.41%
better than LIO-SAM in terms of translational and rotational
absolute trajectory errors (ATE) in the KITTI raw dataset, as
well as in average 6.97% and 4.21% better than LIO-SAM in
the Hsinchu dataset. Compared to the synchronous version,
asynchronous factor graph formulation for LIO-SEGMOT
provides continuous object tracking results, and presents in
average more accurate than the synchronous version in both
odometry and object tracking results. In summary, LIO-
SEGMOT is shown to present accurate odometry results
and continuous object tracking results in real world dynamic
environments, in which robot states and surrounding objects’
states are asynchronously estimated over time.

II. RELATED WORK

A. Odometry with Loosely-Coupled Object Tracking

Odometry approaches with loosely-coupled object track-
ing perform two separate systems that estimate odometry and
multiple object tracking independently [2], [5], [6], [14]–
[16]. In particular, Lim et al. [5] simultaneously estimate
camera trajectory and track a single person in a loosely-
coupled way, where the absolute scale of the trajectory
is recovered with a given height of the tracked human.
Huang et al. introduce ClusterSLAM [16] for a backend
of stereo visual SLAM and estimation of rigid body mo-
tion in dynamic environments, in which surrounding mov-
ing objects are represented as clusters of feature points
with hierarchical agglomerative clustering [17], and their
trajectories are revised with decoupled factor graph opti-
mization. Following up on ClusterSLAM, ClusterVO [2]
performs multi-level probabilistic association and a heteroge-
neous conditional random field cluster assignment for online
clustering. In addition, a double-track frame management

for sliding window-based state estimation is employed to
preserve object tracking performance under the keyframe
selection mechanism. Compared to the double-track frame
management in ClusterVO [2], the proposed asynchronous
state estimation approach does not need to constantly modify
the factor graph architecture in previous timestamps, which
avoids additional computational cost to maintain junction
trees of incremental inference approaches.

B. Odometry with Tightly-Coupled Object Tracking

The main objective of odometry approaches with tightly-
coupled object tracking is to develop a unified optimization
problem that both tasks are jointly estimated and mutually
affect each other during the optimization [4], [7]–[9], [18]–
[22]. In visual-based approaches, Yang and Scherer [4] pro-
pose CubeSLAM to cooperate with monocular visual SLAM
and object detection within a multi-view object SLAM in a
tightly-coupled way, where objects are claimed to provide
scale constraints to increase the accuracy of camera trajec-
tory. Bescos et al. propose DynaSLAM II [21] to formulate
a stereo and RGB-D visual SLAM that tightly integrates
multiple object tracking in terms of factor graphs with
instance segmentation and ORB features [23]. Liu et al. [7]
introduce a probabilistic framework to allow objects to be
tightly- or loosely-coupled to odometry in terms of detection
and estimation uncertainty, and presents its feasibility in
visual odometry. Compared to the proposed hierarchical
criterion for tightly-coupled and loosely-coupled detection
factors, Liu et al. [7] uses 2-D feature points to classify
good or bad objects, whereas the proposed method uses 3-D
object detections to check consistencies of object states and
detections within the spatial domain. Recently, AirDOS [8]
presents a dynamic SLAM approach which jointly estimates
camera poses, object motions, and object structures within
factor graphs by considering the rigidity and motion consis-
tency of articulated objects.

As for LiDAR-based approaches, Wang et al. [9] firstly
demonstrate feasibility of SLAMMOT in 2-D cases with
laser scanners. The closely related work to the proposed
method is DL-SLOT [22], which is recently proposed by
Tian et al. to present a dynamic 3-D LiDAR SLAM with
object tracking. However, DL-SLOT lacks the ability to
refine the robot trajectory and object trajectories globally
due to sliding window-based local optimization. Further-
more, DL-SLOT employs the tightly-coupled formulation of
odometry and object tracking, which breaks the sparsity and
robustness of the system that are also mentioned in [16] and
[7], respectively. In contrast, the proposed method allows
global refinement of all trajectories under an incremental
inference framework. In addition, the sparsity and stability
are improved with the proposed coupling strategy.

III. PROPOSED METHOD

In this section, we introduce the proposed LIO-SEGMOT
that simultaneously estimates the robot trajectory and sur-
rounding objects’ trajectories. The odometry part of LIO-
SEGMOT inherits the factor graph architecture of LIO-



SAM [12], since we can smoothly extend LIO-SAM [12]
to a novel architecture that jointly performs robot odometry
and object tracking within factor graphs. The object track-
ing part of LIO-SEGMOT uses LiDAR-based 3-D object
detection approaches, and we propose a novel measurement
model, called the mock detection measurement model, which
allows the robot state and objects’ states to be estimated
asynchronously over time.

In general, a conservative data association criterion in the
factor graph will degenerate the tracking capability, while
an aggressive criterion will cause optimization instability of
tracking quality due to poor detections. To mitigate the issue,
LIO-SEGMOT uses a hierarchical criterion to determine the
coupling of odometry and object tracking.

A. LiDAR Inertial Odometry via Smoothing and Mapping

LIO-SAM [12] provides a tightly-coupled LiDAR iner-
tial odometry architecture with incremental inference for
smoothing and mapping. It is formulated as a pose graph
optimization problem in terms of factor graphs that contain
robot states, IMU preintegration factors, LiDAR odometry
factors, GPS factors, and loop closure factors. GPS factors
and loop closure factors are optional in the framework and
are skipped in this paper for the sake of conciseness.

Raw IMU measurements are used to compensate point
clouds and to compute the robot motion during a LiDAR
scan [24]. Meanwhile, a mechanism for selecting keyframes
is introduced to improve computational efficiency. Each
keyframe corresponds to a robot pose on the factor graph,
and there are an IMU preintegration factor [25] and a
LiDAR odometry factor connected to any two consecutive
poses, in which the latter one is provided by LOAM-based
scan matching [26] of a keyframe and a local map that is
constructed from a fixed number of previous keyframes. The
robot trajectory is incrementally updated and optimized with
iSAM2 [27] when a robot pose and related factors are newly
added to the factor graph. Furthermore, the updated trajectory
is used to compute the temporal bias of IMU measurements.

B. Factor Graph Formulation in LIO-SEGMOT

Figure 2 shows the LIO-SEGMOT factor graph with
asynchronous odometry and object tracking. The factor graph
formulation consists of variable nodes and factor nodes,
in which variable nodes contain states of the robot and
its surrounding objects, and factor nodes provide odometry
and object tracking constraints for optimization. In variable
nodes, xt ∈ SE(3) represents the robot pose, xt,i ∈
SE(3) represents the i-th object’s pose, and vt,i ∈ SE(3)
represents the i-th object’s linear and angular velocities
at t. As for factor nodes, apart from LiDAR odometry
factors and IMU preintegration factors in LIO-SAM, we
also introduce detection factors, constant velocity factors,
and smooth movement factors for object tracking. From
the perspective of optimization, detection factors constrain
the relative transformation between robot poses and objects’
poses, constant velocity factors constrain the consistency
of two consecutive velocities of an object, and smooth
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Fig. 2: A factor graph of LIO-SEGMOT for odometry and object tracking.
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Fig. 3: Measurement models in LIO-SEGMOT. Odometry measurements in
(a) contain the LiDAR measurement and the IMU measurement. Detection
measurements in (b) illustrate an implicit data association of two objects
with both tightly-coupled and loosely-coupled detection factors. The mock
detection measurement in (c) presents a novel measurement model that
objects’ states at non-keyframe timestamps can be properly estimated.

movement factors constrain object movement between two
consecutive poses of an object with its velocity.

There are four measurement models used in LIO-
SEGMOT, namely the LiDAR measurement model, the IMU
measurement model, the detection measurement model, and
the mock detection measurement model. In the odometry part
of the system, LIO-SEGMOT adopts the LiDAR measure-
ment model and the IMU measurement model introduced
in LIO-SAM [12], as shown in Figure 3(a). For the object
tracking part of the system, we design the detection measure-
ment model that follows a max-mixture model for implicit
data association between objects and detection measurements
(as shown in Figure 3(b)), leading the assignment problem
to be jointly optimized during the optimization. The idea
is referred to FG-3DMOT [13] and the similar idea is also
mentioned in MH-iSAM2 [28]. In addition, detection factors
have tightly- and loosely-coupled forms, where the adjacent
variable nodes of the tightly-coupled form are a robot pose
and an object pose, while the only adjacent variable node of
the loosely-coupled form is an object pose. The tightly- and
loosely-coupled forms are distinguished in factor graphs by
solid and dashed lines respectively, as shown in Figure 3(b).
The major benefit to having both forms on a factor graph is
to prevent system instability due to poor detections [7].



min
X

∑
(xt,xt+1)∈O

∥∥∥fO(xt,xt+1)
∥∥∥2
ΣO︸ ︷︷ ︸

LiDAR odometry error

+
∑

(xt,xt+1)∈I

∥∥∥fI(xt,xt+1)
∥∥∥2
ΣI︸ ︷︷ ︸

IMU preintegration error

+
∑

(xt′ ,xt,i)∈DLC

∥∥∥fLC(xt,i|xt′ )
∥∥∥2
ΣLC︸ ︷︷ ︸

loosely-coupled object detection error

+
∑

(xt′ ,xt,i)∈DTC

∥∥∥fTC(xt′ ,xt,i)
∥∥∥2
ΣTC︸ ︷︷ ︸

tightly-coupled object detection error

+
∑

(vt,i,vt+1,i)∈C

∥∥∥fC(vt,i,vt+1,i)
∥∥∥2
ΣC︸ ︷︷ ︸

object constant velocity error

+
∑

(xt,i,xt+1,i,vt,i)∈M

∥∥∥fM(xt,i,xt+1,i,vt,i)
∥∥∥2
ΣM︸ ︷︷ ︸

object smooth movement error

+
∥∥∥Log(x0)

∥∥∥2
ΣP︸ ︷︷ ︸

prior robot pose error

+
∑

vt,i∈V

∥∥∥Log(vt,i)
∥∥∥2
ΣV︸ ︷︷ ︸

prior object velocity error

,

(1)

To deal with detection constraints for object states at non
keyframes (e.g., x2,1, x4,1, and x4,2 in Figure 2), the mock
detection measurement model is newly introduced in LIO-
SEGMOT. The main idea is to apply data fusion of LiDAR
scans and object detections so that the detection factors in
this case can be associated with the latest robot state. In
practice, the coordinate of object detections is transformed
from the non-keyframe to the latest keyframe. Figure 3(c)
illustrates the mock detection measurement model for a
detection at t > t′ that a mock detection is generated by the
original detection and the relative transformation of the robot
states at t and t′, where the transformation is provided by the
LOAM-based scan matching of the LiDAR frame at t and
the local voxel map at t′. The mock detection measurement
model not only lets the asynchronous state estimation prob-
lem be well-defined, but allows LIO-SEGMOT to perceive
complete objects’ states.

Different from the constant linear velocity model used in
FG-3DMOT [13], we adopt the constant linear and angular
velocity model (CLAV) to express the object dynamics to
provide smooth translational and rotational movements of
objects. In LIO-SEGMOT, constant velocity factors provide
a soft constraint that velocities at two consecutive timestamps
should be similar; smooth movement factors adopt CLAV to
constrain object movement between two consecutive object
states based on the estimated velocities.

The optimization problem of LIO-SEGMOT is formulated
by Eq. (1), where X is the set of all variables, O, I, DLC,
DTC, C, and M are the sets of LiDAR odometry factors, IMU
preintegration factors, loosely- and tightly-coupled detection
factors (respectively), constant velocity factors, and smooth
movement factors in terms of their adjacent variable nodes,
respectively, and Log :SE(3) → R6 is the capitalized
SE(3) logarithm map [29]. The corresponding measurement
functions of these factors are fO, fI, fLC, fTC, fC:SE(3)2 →
R6, and fM:SE(3)3 → R6. Meanwhile, the corresponding
covariance matrices are ΣO, ΣI, ΣLC, ΣTC, ΣC, ΣM ∈ R6×6.
The optimization problem also requires prior information
on the robot pose and all object velocities with respect
to the covariance matrices ΣP ∈ R6×6 and ΣV ∈ R6×6.
The mathematical formulations of fLC, fTC, fC and fM are
provided in the following sections:

1) Tightly- and Loosely-Coupled Detection Factors: The
detection factors adopt an equally weighted Gaussian mixture
model (GMM) with a maximum mixture approximation [30],
[31]. Given the pose of the i-th object xt,i ∈ SE(3) at t,
the latest robot pose xt′ ∈ SE(3) at t′ ≤ t, and a finite non-
empty set of (mock, if t′ < t) detection measurements Zt ⊊
SE(3), the measurement function for the general detection

factor is written as

fD(xt′ ,xt,i|Zt) = Log(z−1x−1
t′ xt,i), (2)

where
z = argmin

y∈Zt

∥Log(y−1x−1
t′ xt,i)∥2ΣD

. (3)

The proposed method provides two types of detection factors,
in which the tightly-coupled detection factor,

fTC(xt′ ,xt,i|Zt) = fD(xt′ ,xt,i|Zt), (4)

views the pose of the robot xt′ and the pose of the object
xt,i as variables to be updated in the factor graph. On the
other hand, the loosely-coupled detection factor,

fLC(xt,i|xt′ ,Zt) = fD(xt′ ,xt,i|Zt), (5)

views the pose of the object xt,i as a variable, but views the
pose of the robot xt′ as a constant.

2) Constant Velocity Factors: The proposed method as-
sumes that each object moves with a constant velocity in a
short period of time. For a single object, the measurement
function of the constant velocity factor with two consecutive
velocity variables vt,i,vt+1,i ∈ SE(3) is given by

fC(vt,i,vt+1,i) = Log(v−1
t+1,ivt,i), (6)

and the factor is only used for two consecutive timestamps.
3) Smooth Movement Factors: Smooth movement factors

are used to constrain the motion behavior of objects. Follow-
ing CLAV, the measurement function is given by

fM(xt,i,xt+1,i,vt,i|δt,t+1)

= Log
(
x−1
t+1,ixt,i Exp(δt,t+1 Log(vt,i))

)
, (7)

where xt,i,xt+1,i ∈ SE(3) are the i-th object’s poses at
timestamps t and t+1 respectively, δt,t+1 is the time interval
between timestamps t and t+ 1, and Exp : R6 → SE(3) is
the capitalized SE(3) exponential map [29].

C. Hierarchical Criterion for Coupling and Tracking

To overcome the uncertainty of object detections, a hier-
archical criterion for LiDAR object detections is proposed in
LIO-SEGMOT to progressively make the following decisions
when a new detection z ∈ SE(3) is coming into the system:
(Q1) Does the detection belong to any existing object xt,i?
(Q2) If (Q1) holds, does z follows the i-th object’s motion?
(Q3) If (Q1) and (Q2) hold, should the tightly-coupled
detection factor be applied?
The first two questions (Q1) and (Q2) are determined by
using the Mahalanobis distance of the error vector,∥∥∥Log(z−1x̃−1

t′ x̃t,i)
∥∥∥
Σ
≤ ε, (8)

with given covariance matrices Σ ∈ {ΣQ1
,ΣQ2

} ⊊ R6×6 and
a threshold ε > 0, where x̃t′ and x̃t,i are initial estimations
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Fig. 4: A graphical view of relationship between the robot and the i-th
object. Red variables are new states that do not have previous estimates.

of the robot state xt′ at t′ and the i-th object pose xt,i at t
based on current measurements and factor graph, i.e.,

x̃t′ =

{
xt′ if t′ < t,

xt′′∆t′′,t′ if t′ = t,
(9)

x̃t,i = xt−1,i Exp(δt−1,t Log(vt−1,i)), (10)

where xt′′ is the latest existing robot state at t′′ in the factor
graph, and ∆t′′,t′ is the relative transformation of xt′′ and
xt′ computed by scan matching, as shown in Figure 4. We
also assume that ΣQ2

− ΣQ1
is positive semidefinite (i.e.,

ΣQ2
− ΣQ1

⪰ 0) to prevent ambiguity of the hierarchical
criterion that (Q2) holds but (Q1) does not hold.

Two spatial information-based tests are conducted to de-
termine (Q3), which are the detection constraint and the
velocity constraint. The former focuses on the consistency
between predicted object poses and detections, and the latter
focuses on the consistency of previous velocities. In practice:
(Q3-1) (Detection constraint) Eq. (8) holds with another
given covariance matrix ΣQ3,1

that satisfies ΣQ3,1
−ΣQ2

⪰ 0.
(Q3-2) (Velocity constraint) The variance of velocities is
small enough. That is,

1

N

N∑
s=1

∥∥∥Log(vt−s,i)− Log(v̄t,i)
∥∥∥2
ΣQ3,2

≤ ε (11)

with a given covariance matrix ΣQ3,2
, where N is the fixed

number of previous velocities of object states and v̄t,i ∈
SE(3) is the mean of the N previous velocities.

If (Q1) holds for the detection z and the corresponding i-th
object, the new state of the i-th object along with a loosely-
coupled detection factor would be added to the factor graph.
Furthermore, if (Q2) holds, a constant velocity factor and a
smooth movement factor would be also added to the factor
graph. Finally, if (Q3) holds, the loosely-coupled detection
factor would be replaced with a tightly-coupled detection
factor. It means that the i-th object are regarded as a reliable
object that are suitable to refine the odometry.

IV. EXPERIMENTS

We evaluate LIO-SEGMOT in two real world datasets,
the KITTI raw dataset [3] and the self-collected Hsinchu
dataset, to the proposed method in dynamic environments1.
We use the translational and the rotational absolute trajectory
errors, ATET (meter) and ATER (degree), in terms of root-
mean-square errors (RMSE), as the evaluation metrics for
odometry [32]. All experiments are conducted on a desktop
computer with an Intel i7-11700 CPU, 32GB RAM, and a
GeForce RTX 3070 8GB graphical card.

1Code and hyperparameter setting are available at https://github.
com/StephLin/LIO-SEGMOT.

TABLE I: Absolute robot trajectory errors and computational times (CT)
in second of LIO-SAM and LIO-SEGMOT under the KITTI raw dataset.
Bold text means the best result, and underlined text means the suboptimal
result. Results of both synchronous and asynchronous LIO-SEGMOT in
0926-0013 and 0926-0032 are same as each LiDAR frame is consid-
ered to be keyframe; i.e., their factor graphs are identical.

Sequence LIO-SAM LIO-SEGMOT LIO-SEGMOT
(synchronous) (asynchronous)

ATET ATER CT ATET ATER CT ATET ATER CT

0926-0009 0.526 0.966 95.8 0.503 0.956 116.0 0.512 0.951 135.7
0926-0013 0.217 1.116 33.9 0.214 0.954 36.5 0.214 0.954 36.5
0926-0014 0.601 5.062 75.4 0.570 4.871 80.4 0.573 4.974 81.3
0926-0015 0.362 6.764 75.3 0.385 6.148 82.3 0.336 5.239 83.0
0926-0032 1.021 14.505 108.5 1.124 14.019 116.5 1.124 14.019 116.5
0926-0051 0.284 3.130 98.3 0.300 3.109 102.4 0.266 3.310 111.1
0926-0101 5.826 75.108 226.8 5.803 75.180 245.6 5.875 75.148 248.1

A. KITTI Raw Dataset

Data Collection. The KITTI raw dataset [3] is selected in-
stead of other KITTI datasets as it provides complete LiDAR
scans and IMU data. Sequences including moving objects are
chosen for evaluation. The 64-beams LiDAR scanner (Velo-
dyne HDL-64E) provides averagely 10 scans per second,
and the IMU sensor (OxTS RT3003) provides averagely 100
records per second. SE-SSD [33] with the pre-trained model
is adopted to detect 3-D objects in point clouds.

Experimental Results. Table I shows the odometry re-
sults on the KITTI raw dataset. The asynchronous LIO-
SEGMOT are on average 1.61% and 5.41% better than LIO-
SAM in translational and rotational errors, respectively. On
the other hand, the synchronous LIO-SEGMOT does not
present comparable odometry accuracies to the asynchronous
version, and does not output better odometry accuracies
than LIO-SAM in terms of translational absolute trajectory
errors. To investigate the phenomenon, we compare object
tracking results of the synchronous LIO-SEGMOT and the
asynchronous LIO-SEGMOT quantitatively. Table II lists
the tracking results in average translational and rotational
relative pose error, RPET and RPER, in terms of RMSE
of all surrounding moving object trajectories. We observe
that the asynchronous LIO-SEGMOT outperforms the syn-
chronous LIO-SEGMOT in trajectory errors of moving ob-
jects. This indicates that the asynchronous LIO-SEGMOT
benefits from complete detection measurements in object
tracking. In addition, the asynchronous LIO-SEGMOT re-
ceives more object detection cues for both odometry and
object tracking tasks, leading to promisingly robust and ac-
curate robot trajectories and surrounding objects’ trajectories
in dynamic environments.

We also perform a qualitative analysis for object tracking
results of the synchronous LIO-SEGMOT and the asyn-
chronous LIO-SEGMOT. Figure 5 shows a visual compar-
ison between the synchronous and asynchronous versions
of LIO-SEGMOT in the KITTI sequence 0926-0101.
The robot is stationary in the first second, and there are
several surrounding dynamic vehicles. Since the synchronous
version does not update new object states when incoming a
non-keyframe LiDAR scan, the states of dynamic objects
are not updated accordingly. It results in degenerated object
tracking results, and the object association could fail in the
next state. By contrast, the asynchronous version can provide

https://github.com/StephLin/LIO-SEGMOT
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Fig. 5: Visual comparison of object tracking results for synchronous and
asynchronous LIO-SEGMOT under the KITTI sequence 0926-0101.
Green solid cuboids are detection measurements, and 3-D bounding boxes
in different colors are different tracked objects. Colored dots and arrows
are objects’ trajectories and velocities, respectively. One can see that in
timestamps t and t+4, asynchrinous estimation results produce continuous
and accurate object poses and velocities, while synchrinous estimation
results do not perform object tracking as the robot is stationary.

TABLE II: Average translational (m/frame) and rotational (deg/frame)
relative pose errors of all surrounding moving objects under the KITTI
raw dataset. The KITTI sequence 0926-0101 is omitted since there is no
ground truth tracking result for evaluation.

Sequence
(#moving objects)

LIO-SEGMOT LIO-SEGMOT
(synchronous) (asynchronous)

RPET RPER RPET RPER

0926-0009 (4) 0.142 2.151 0.128 1.870
0926-0013 (2) 0.156 1.673 0.156 1.673
0926-0014 (16) 0.174 1.766 0.153 1.475
0926-0015 (7) 0.156 1.555 0.156 1.531
0926-0032 (12) 0.196 1.725 0.196 1.725
0926-0051 (8) 0.165 1.607 0.157 1.505

continuous object tracking results over time even though
there is only one single robot state in the factor graph.

B. Hsinchu Dataset

Data Collection. The Hsinchu dataset is collected at
Guangfu road in Hsinchu city, which is a high dynamic
urban scene crowded by cars and motorcycles. Figure 6
shows an overview of the sequence in the Hsinchu dataset,
and we can see that there are numerous vehicles around the
data collection car. The 32-beams LiDAR scanner (Velodyne
VLP-32C) provides on average 10 scans per second, and
the IMU sensor (Xsens-MTI-G-710) provides on average
100 records per second. PointPillars [34] with a pre-trained
model [35] is used in this experiment as the detection
model performs better adaptation on the Hsinchu dataset.
The ground truth robot trajectory is computed with tactical-
grade IMU, GNSS, LiDAR, and wheel encoder.

Experimental Results. Table III shows the experiment
results in terms of translational and rotational absolute
robot trajectory errors in the Hsinchu dataset. Compared
to LIO-SAM, the odometry result of the asynchronous
LIO-SEGMOT presents in an average improvement 6.97%
and 4.21% in translational and rotational trajectory errors,
respectively. It shows the feasibility of the asynchronous
LIO-SEGMOT to provide accurate odometry with infor-
mative dynamic objects in highly dynamic environments.
We also quantitatively compare the object tracking results
of the synchronous LIO-SEGMOT and the asynchronous
LIO-SEGMOT. Table IV lists the tracking results in average

LiDAR Map
and Traffic Flow

Front View

LiDAR Map
and Traffic Flow Front View

LiDAR Map
and Traffic Flow Front View

Fig. 6: LiDAR map and the traffic flow of the GuangfuRoad sequence in the
Hsinchu dataset. Gray points are point clouds, and colored dots are objects’
trajectories. Three close-up views with front views exhibit high dynamic
scenes that crowded by vehicles.

TABLE III: Absolute robot trajectory errors and computational time (CT) in
sec of LIO-SAM and LIO-SEGMOT under the Hsinchu dataset. Bold text
indicates the best result, and underlined text means the suboptimal result.

Sequence LIO-SAM LIO-SEGMOT LIO-SEGMOT
(synchronous) (asynchronous)

ATET ATER CT ATET ATER CT ATET ATER CT

GuangfuRoad 1.204 3.349 338.1 1.537 3.189 1864.9 1.120 3.208 3392.9

TABLE IV: Average translational (m/frame) and rotational (deg/frame)
relative pose errors of all moving objects in the Hsinchu dataset. The moving
objects of the first 3/8 part of the sequence are labelled for evaluation.

Sequence
(#moving objects)

LIO-SEGMOT LIO-SEGMOT
(synchronous) (asynchronous)

RPET RPER RPET RPER

GuangfuRoad (66) 0.554 3.214 0.503 2.833

translational and rotational relative pose error of surrounding
moving objects in the first 3/8 part of the GuangfuRoad
sequence. Similar to the previous results, we observe that
the asynchronous LIO-SEGMOT also outperforms the syn-
chronous LIO-SEGMOT in tracking accuracy. Compared to
the synchronous version, the asynchronous LIO-SEGMOT
demonstrates the importance of utilizing complete detection
information in both odometry and object tracking systems.

V. CONCLUSION

We present LIO-SEGMOT, a dynamic object-aware
LiDAR-inertial odometry approach via simultaneous ego-
motion estimation and multiple object tracking. We formulate
a nonlinear factor graph to estimate LiDAR-inertial odometry
with coupled dynamic object tracking, where the two sub-
systems are seamlessly integrated by introducing the mock
detection measurement model. In addition, a hierarchical
criterion for coupling and tracking is introduced to conquer
the uncertainty of object detections. Real world experiment
results indicate that LIO-SEGMOT presents a comparable
or better accuracy than LIO-SAM in dynamic environments,
in terms of absolute trajectory errors. Compared to the syn-
chronous version, the asynchronous LIO-SEGMOT further
provides continuous and accurate object tracking results.

In the future, we would like to speed up LIO-SEGMOT
by optimizing the proposed factor graph with multi-robot
iSAM2 [36]. Furthermore, we plan to extend LIO-SEGMOT
to a factor graph-based mix-integer programming problem
with MH-iSAM2 [28] so that it can explore global optimality
among all combinatorial possibilities of detection coupling.
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