KCP
An efficient and effective 3D laser scan matching
kcp::KCP Class Reference

The KCP-TEASER registration approach. More...

#include <kcp/solver.hpp>

Inheritance diagram for kcp::KCP:
Collaboration diagram for kcp::KCP:

Classes

struct  Params
 Type of parameters for the KCP-TEASER solver. More...
 

Public Types

using TEASER = teaser::RobustRegistrationSolver
 Type alias of the TEASER++ solver.
 

Public Member Functions

 KCP (KCP::Params params)
 Construct a new KCP object. More...
 
KCP::Paramsget_params ()
 Get the parameters. More...
 
const Correspondencesget_initial_correspondences () const
 Get the initial set of correspondences. More...
 
const std::vector< int > & get_inlier_correspondence_indices () const
 Get the inlier correspondence indices. More...
 
virtual void solve (const Eigen::MatrixX3d &src, const Eigen::MatrixX3d &dst, const Eigen::MatrixXd &src_feature, const Eigen::MatrixXd &dst_feature) override
 The main function to trigger the KCP-TEASER registration approach. More...
 
- Public Member Functions inherited from kcp::AbstractSolver
 AbstractSolver ()
 Constructor.
 
virtual const Eigen::Matrix4d & get_solution () const
 Get the solution of the registration. More...
 

Protected Attributes

TEASER solver
 The TEASER++ solver.
 
KCP::Params params
 Parameters for the KCP-TEASER solver.
 
Correspondences initial_correspondences
 The initial set of k-closest-points correspondences.
 
std::vector< int > inlier_correspondence_indices
 The inlier correspondence indices with respect to initial_correspondences. The set is estimated by the maximum clique pruning method.
 
- Protected Attributes inherited from kcp::AbstractSolver
Eigen::Matrix4d solution
 The estimation result.
 

Detailed Description

The KCP-TEASER registration approach.

KCP is an efficient and effective local point cloud registration approach targeting for real-world 3D LiDAR scan matching problem. A simple (and naive) understanding is: ICP iteratively considers the closest point of each source point, but KCP considers the k closest points of each source point in the beginning, and outlier correspondences are mainly rejected by the maximum clique pruning method (provided by TEASER++).

See also
Yu-Kai Lin, Wen-Chieh Lin, Chieh-Chih Wang, KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching. To appear in IEEE Robotics and Automation Letters (RA-L), 2022.

Constructor & Destructor Documentation

◆ KCP()

kcp::KCP::KCP ( KCP::Params  params)
inline

Construct a new KCP object.

Parameters
paramsKCP-TEASER parameters.

Member Function Documentation

◆ get_initial_correspondences()

const Correspondences& kcp::KCP::get_initial_correspondences ( ) const
inline

Get the initial set of correspondences.

Returns
const Correspondences& Initial set of correspondences.

◆ get_inlier_correspondence_indices()

const std::vector<int>& kcp::KCP::get_inlier_correspondence_indices ( ) const
inline

Get the inlier correspondence indices.

Returns
const std::vector<int>& Inlier correspondence indices.

◆ get_params()

KCP::Params& kcp::KCP::get_params ( )
inline

Get the parameters.

Returns
Parameters.

◆ solve()

void kcp::KCP::solve ( const Eigen::MatrixX3d &  src,
const Eigen::MatrixX3d &  dst,
const Eigen::MatrixXd &  src_feature,
const Eigen::MatrixXd &  dst_feature 
)
overridevirtual

The main function to trigger the KCP-TEASER registration approach.

Parameters
srcThe source point cloud.
dstThe target point cloud.
src_featureThe source feature cloud.
dst_featureThe target feature cloud.

Implements kcp::AbstractSolver.


The documentation for this class was generated from the following files: